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We observed iron
deficiency in the brain
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Characterising brain

changes in mutants

Whole zebrafish brains were
subjected to poly-A-enriched
RNA-sequencing. Pairwise
comparisons between conditions
were used to explore effects of
the , aging, and
hypoxia on gene expression.

Principal Component Analysis
(PCA) was used to visualise
overall similarity between samples.
In the PCA plot of ~20,000
expressed genes, the effects

of aging appeared to obscure
gene expression changes due to
genotype or hypoxia.
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To explore coordinated gene expression changes in
siblings, we performed Gene Set Enrichment Analysis on MSigDB Hallmark gene sets®. Significant
gene sets at 6 months are useful clues for pathways altered earlier in disease pathogenesis (®
indicates GSEA enrichment FDR-adj. p < 0.05). Up/Down-regulated indicate genes in gene sets
that were significantly differentially expressed via limma* analysis (FDR-adj. p < 0.05).
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Exploring iron
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deficiency through 3’

IRE gene expression

We focused on iron homeostasis through the IRE genes defined earlier to see whether evidence of an iron deficiency response was present in certain conditions.
Together, the Gene Set Enrichment Analysis, PCA, and heatmap of DE genes containing IREs in the young mutant vs. wild-type siblings below all suggest that an
3" IRE response occurs in aging, hypoxia, and , and shared gene expression changes are present. Our findings represent the first evidence
in a genetic model of familial Alzheimer’s disease supporting a recently-proposed hypothesis that positions disrupted iron homeostasis as a key effect of familial

Alzheimer’s disease mutations®.
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