

DIVING INTO ALZHEIMER'S DISEASE

with transcriptome analysis of a zebrafish model

Nhi Hin (Master of Philosophy) Bioinformatics Hub, University of Adelaide

What does the Alzheimer's disease brain look like?

e.g. Transcriptome measurements using RNA-seq^[3-6],

Proteomic measurements using mass spectrometry

To investigate early events in Alzheimer's disease, we need a study here.

Upregulate	ed by AD	#	PValu	ue	
cell adhesi	on	10	8.05E-	04	
response to	wounding	7	1.17E-	03	
adherens j	notion	4	4.405.0	22	-
cell death	Downregulated by	/ AD		#	PValue
platelet alp	precursor metaboli	18	7.47E-10		
iron ion bir	organelle envelope	18	2.35E-05		
protein olic	microtubule-based	ess	11	4.66E-05	
mveloid ce	ribonucleotide bind	29	9.92E-04		
,	synaptic vesicle me	4	9.95E-04		
	synapse part	8	5.60E-03		
	CNS neuron develo	3	2.87E-02		
	actin cytoskeleton	7	2.97E-02		
	mitochondrial matri	6	4.77E-02		

Young adult brain

Lower resolution

e.g. brain imaging, autopsies, cerebrospinal fluid A β measurements $^{[1,\,2]}$

Nochlin D et al. Alzheimer Dis Assoc Disord. 1993;7(4):212-22.
 Reiman EM et al. Lancet Neurol. 2012;11(12):1048-56.
 Magistri M et al. J Alzheimers Dis. 2015;48(3):647-65.

Scheckel C et al. *elife*. **2016** Feb 19;5.
 Hargis KE, Blalock EM. *Behav Brain Res*. **2017** Mar 30;322(Pt B):311–28.
 Saito T et al. *J Neurosci*. **2016** Sep 21;36(38):9933–6.

Post-mortem elderly brain

What does the Alzheimer's disease brain look like?

Lower resolution

e.g. brain imaging, autopsies, cerebrospinal fluid $\mathsf{A}\beta$ measurements^[1, 2]

brain

4. Scheckel C et al. elife. 2016 Feb 19;5. 5. Hargis KE, Blalock EM. Behav Brain Res. 2017 Mar 30;322(Pt B):311-28. 6. Saito T et al. J Neurosci. 2016 Sep 21;36(38):9933-6.

What does the Alzheimer's disease brain look like?

Lower resolution

e.g. brain imaging, autopsies, cerebrospinal fluid A β measurements $^{[1,\,2]}$

Young adult

brain

Scheckel C et al. *elife*. 2016 Feb 19;5.
 Hargis KE, Blalock EM. *Behav Brain Res*. 2017 Mar 30;322(Pt B):311–28.
 Saito T et al. *J Neurosci*. 2016 Sep 21;36(38):9933–6.

A zebrafish model of Alzheimer's disease

Mutant psen1 genotype: K97Gfs/+

K97Gfs is equivalent to a known familial Alzheimer's disease mutation^[7-9].

Heterozygous mutation, so that the mutant protein product is expressed at physiologically relevant levels.

All mutant and wildtype zebrafish are siblings raised in the same tank. At 6 months and 24 months, brains removed for total RNA sequencing.

RNA-seq Analysis

3 Are changes in psen1 How are biological Which genes Which mutants similar to show altered processes biological those in human connected in the expression in processes are psen1 mutants?

altered in psen1 mutants?

zebrafish brain transcriptome?

Which genes show altered expression in *psen1* mutants?

 Differential gene expression analysis using moderated *t*-tests (*limma*).

Gene expression changes in 6-month-old mutant brains imply premature aging.
 In 24-month-old mutant brains, gene expression is inverted.

- 1. Gene expression changes in 6-month-old mutant brains imply premature aging.
- 2. In 24-month-old mutant brains, gene expression is **inverted**.

Gene expression changes in 6-month-old mutant brains imply premature aging.
 In 24-month-old mutant brains, gene expression is inverted.

3 Are changes in psen1 How are biological Which genes Which mutants similar to show altered processes biological those in human connected in the expression in processes are psen1 mutants?

altered in psen1 mutants?

zebrafish brain transcriptome?

Which biological processes are altered in psen1 mutants?

- A gene set is a group of 0 genes involved in a biological process.
- Hallmark gene sets from Ο MSigDB aggregated from multiple studies^[10].
- Gene set testing (using Ο FRY and ROAST) to identify differentially expressed gene sets for each comparison^[11].

INTERFERON GAMMA RESPONSE

COMPLEMENT

Proport	ion of upre	egulated genes – P	roporti	on of	down	regula	ated g	enes												
	-0.2	-0.1	0		0.1		0.:	2												
		COMPARISON																		
6-month <i>muta</i>			↑0.12 ↓0.099		10.18 ↓0.081		↑0.066 ↓0.14	↑0.11 ↓0.11	↑0.12 ↓0.094		↑0.11 ↓0.12				↑0.16 ↓0.082					
24-month wildty	↑0.22 ↓0.29	↑0.24 ↓0.33	↑0.26 ↓0.23	↑0.26 ↓0.24	↑0.28 ↓0.21	↑0.28 ↓0.24	↑0.26 ↓0.26	↑0.29 ↓0.3	↑0.22 ↓0.25	↑0.25 ↓0.29	↑0.24 ↓0.26	↑0.23 ↓0.24	↑0.25 ↓0.25	↑0.22 ↓0.22	↑0.27 ↓0.26	↑0.26 ↓0.25	↑0.24 ↓0.26	↑0.25 ↓0.21		
24-month <i>mutar</i>	↑0.094 ↓0.058	↑0.099 ↓0.11	↑0.064 ↓0.17		↑0.051 ↓0.19	↑0.033 ↓0.17	↑0.029 ↓0.15	↑0.1 ↓0.14		↑0.082 ↓0.12		↑0.12 ↓0.14	↑0.088 ↓0.11	↑0.11 ↓0.13	↑0.089 ↓0.12	↑0.089 ↓0.14	↑0.075 ↓0.14	↑0.1 ↓0.17		
			REACTIVE OXYGEN SPECIES PATHWAY	COAGULATION	GLYCOLYSIS	MYC TARGETS V2	WNT BETA CATENIN SIGNALING	PEROXISOME	E2F TARGETS	ESTROGEN RESPONSE LATE	OXIDATIVE PHOSPHORYLATION	UV RESPONSE DN	XENOBIOTIC METABOLISM	KRAS SIGNALING DN	INTERFERON ALPHA RESPONSE	PI3K AKT MTOR SIGNALING	ESTROGEN RESPONSE EARLY	MTORC1 SIGNALING	APOPTOSIS	MYOGENESIS

				-0.2		-0	.1		0		0.1		0	.2												
Г																										
						СОМІ	PARIS	SON																		
0.01 ↓0.	666 6 . - .m 14 ↓ 0.11		muta	ntvs. ↓0.12	6-mc	onth	wildt	/ D€ .16 ↓0.082					↑0.077 ↓0.11							10.13 ↓0.058			↑0.091 ↓0.076	↑0.14 ↓0.12	↑0.17 ↓0.13	10.15 ↓0.097
↑0.: ↓0.:	²⁶ 24-m 26 24-0.3		wildty	∕pê ∛s	. 6 -23 0.24	onîth 0.25	wild t		↑0.26 ↓0.25	↑0.24 ↓0.26	↑0.25 ↓0.21	↑0.31 ↓0.29	↑0.28 ↓0.22	↑0.28 ↓0.23	↑0.28 ↓0.19	↑0.29 ↓0.19	↑0.32 ↓0.23	↑0.29 ↓0.21	↑0.31 ↓0.21	↑0.26 ↓0.2	↑0.28 ↓0.2	↑0.33 ↓0.26	↑0.28 ↓0.21	↑0.28 ↓0.23	↑0.25 ↓0.22	↑0.28 ↓0.23
0.01 ↓0.∵	0.1 15 24,−m	onth <i>i</i>	^ 0.082 muta r	ntvs.	^{↑0.12} 2 4- m	^{↑ 0.088} onth	wildt	↑0.089 ype 12	↑0.089 ↓0.14	↑0.075 ↓0.14	↑0.1 ↓0.17	↑0.086 ↓0.15	↑0.07 ↓0.15	↑0.11 ↓0.16	↑0.069 ↓0.097	↑0.082 ↓0.16	↑0.082 ↓0.14	↑0.09 ↓0.15	↑0.12 ↓0.13	↑0.066 ↓0.18	↑0.048 ↓0.14		↑0.053 ↓0.14	↑0.065 ↓0.14	↑0.089 ↓0.15	↑0.069 ↓0.14
FOF TARGETS	ESTROGEN RESPONSE LATE	OXIDATIVE PHOSPHORYLATION	UV RESPONSE DN	XENOBIOTIC METABOLISM	KRAS SIGNALING DN	INTERFERON ALPHA RESPONSE	PI3K AKT MTOR SIGNALING	ESTROGEN RESPONSE EARLY	MTORC1 SIGNALING	APOPTOSIS	MYOGENESIS	HEME METABOLISM	FATTY ACID METABOLISM	BILE ACID METABOLISM	MITOTIC SPINDLE	G2M CHECKPOINT	UNFOLDED PROTEIN RESPONSE	IL6 JAK STAT3 SIGNALING	CHOLESTEROL HOMEOSTASIS	HEDGEHOG SIGNALING	ALLOGRAFT REJECTION	APICAL JUNCTION	IL2 STAT5 SIGNALING	INTERFERON GAMMA RESPONSE	COMPLEMENT	ANDROGEN RESPONSE

Proportion of upregulated genes – Proportion of downregulated genes

				-().2		-0.1		0		0	.1		0.2												
	6-	mont	:h <i>mu</i>	tant	/s. 6-	CO mont	MPAR	RISON	↑0.15		↑0.16 ↓0.12	↑0.12 ↓0.11		↑0.13 ↓0.12		↑0.15 ↓0.074	↑0.19 ↓0.099		↑0.12 ↓0.07		↑0.11 ↓0.12	↑0.076 ↓0.083		↑0.13 ↓0.092		
32 23	24 -r	nônt	h wile		v\$0.36	- môn 0.21	th <i>wil</i>		↑0.28 ↓0.23	↑0.28 ↓0.25	 ↓ 0.12 ↑ 0.39 ↓ 0.17 ↑ 0.056 	 ↓ 0.36 ↓ 0.17 ↑ 0.12 	↑ 0.36 ↓ 0.22	 ↓ 0.12 ↑ 0.34 ↓ 0.17 ↑ 0.045 	↑0.33 ↓0.17	↑ 0.36 ↓ 0.22	 ↑ 0.34 ↓ 0.22 ↑ 0.053 	↑0.35 ↓0.24	 ↓ 0.31 ↓ 0.19 ↑ 0.063 	↑ 0.35 ↓ 0.21	 ↑ 0.32 ↓ 0.22 ↑ 0.081 	 ↑ 0.29 ↓ 0.19 ↑ 0.042 	↑0.32 ↓0.21	 ↑ 0.36 ↓ 0.23 ↑ 0.077 	↑0.36 ↓0.26	↑0.29 ↓0.21
14	1L6 JAK STAT3 SIGNALING	CHOLESTEROL HOMEOSTASIS	HEDGEHOG SIGNALING	ALLOGRAFT REJECTION	s. APICAL JUNCTION	IL2 STAT5 SIGNALING	INTERFERON GAMMA RESPONSE	COMPLEMENT	ANDROGEN RESPONSE	PROTEIN SECRETION	EPITHELIAL MESENCHYMAL TRANSITION	PANCREAS BETA CELLS	↓0.1 P53 PATHWAY	10.02 ↓0.2 TNFA SIGNALING VIA NFKB	ADIPOGENESIS	DNA REPAIR	APICAL SURFACE	↓0.15 ANGIOGENESIS	10.063 10.15 SPERMATOGENESIS	LO US KRAS SIGNALING UP	U.01 U.17 HYPOXIA	10.042 10.15 INFLAMMATORY RESPONSE	MYC TARGETS V1	JO.18 TGF BETA SIGNALING	↓0.18 NOTCH SIGNALING	UV RESPONSE UP

Proportion of upregulated genes – Proportion of downregulated genes

3 Are changes in psen1 How are biological Which genes Which mutants similar to show altered processes biological those in human connected in the expression in processes are psen1 mutants?

altered in psen1 mutants?

zebrafish brain transcriptome?

How are biological processes connected in the zebrafish brain transcriptome?

- Weighted gene coexpression network analysis^[12] allows us to determine "modules" or groups or genes with correlated expression.
- Most modules show functional enrichment.
- Many modules are altered in *psen1* mutants (using module-trait correlation).

Visualisation produced by plotting adjacency matrix (representing the gene coexpression network) in Gephi.

3 Are changes in psen1 How are biological Which genes Which mutants similar to show altered processes biological those in human connected in the expression in processes are psen1 mutants?

altered in psen1 mutants?

zebrafish brain transcriptome?

Are changes in *psen1* mutants similar to those in human Alzheimer's disease brains?

- Constructed gene co-expression network for a publically-available human Alzheimer's disease microarray-based dataset^[13], with homologous human genes and *collapseRows* function^[14].
- Used module preservation statistics^[15] to determine whether module properties and genes are preserved between zebrafish and human brain.

altered expression in psen1 mutants. Biological processes are altered in *psen1* mutants.

Biological processes are connected in the zebrafish brain transcriptome. Are changes in psen1 mutants similar to those in human Alzheimer's disease brains?

Acknowledgements

supervisors Stephen Pederson

BIOINFORMATICS HUB

Rick Tearle Jimmy Breen Hien To Awais Choudhry Alastair Ludington Melanie Smith Jacqueline Rehn Kelly Ren Justin Bogias Dehui Kong Charlotte Sai Pan Zheng Ning Liu

Michael Lardelli

ALZHEIMER'S DISEASE GENETICS LABORATORY

Morgan Newman Tanya Jayne Haowei Jiang Yang Dong Karissa Barthelson Hani Moussavi Nik

BIOINFORMATICS CENTER

Dave Adelson Dan Kortschak