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A straightforward approach using RNA-seq 
data to explore iron homeostasis.
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Under iron-deficient conditions, Iron 
Responsive Proteins bind to Iron 
Responsive Elements, which are located 
in UTRs of genes involved in iron 
homeostasis. Generally, this results in 
increased  3’ IRE gene expression and 
decreased 5’ IRE gene expression1.

We observed iron 
deficiency in the brain 
with aging, hypoxia, & 
a familial Alzheimer’s 
disease-like mutation. 

We searched2 all zebrafish 
transcript UTRs for IRE stem-loop 
motifs to form comprehensive sets 
of genes regulated by 3’ and 5’ 
IREs. Many genes in these lists are 
not represented in existing gene 
sets, indicating our IRE gene sets 
may represent a new resource 
for gene expression analyses 
exploring iron homeostasis.

Whole zebrafish brains were 
subjected to poly-A-enriched 
RNA-sequencing. Pairwise 
comparisons between conditions 
were used to explore effects of 
the fAD-like mutation, aging, and 
hypoxia on gene expression. 

1
Principal Component Analysis 
(PCA) was used to visualise 
overall similarity between samples. 
In the PCA plot of ~20,000 
expressed genes, the effects 
of aging appeared to obscure 
gene expression changes due to 
genotype or hypoxia. 

To explore coordinated gene expression changes in Q96K97/+ mutants relative to wild-type 
siblings, we performed Gene Set Enrichment Analysis on MSigDB Hallmark gene sets3. Significant 
gene sets at 6 months are useful clues for pathways altered earlier in disease pathogenesis (● 
indicates GSEA enrichment FDR-adj. p < 0.05). Up/Down-regulated indicate genes in gene sets 
that were significantly differentially expressed via limma4 analysis (FDR-adj. p < 0.05).

We focused on iron homeostasis through the IRE genes defined earlier to see whether evidence of an iron deficiency response was present in certain conditions. 
Together, the Gene Set Enrichment Analysis, PCA, and heatmap of DE genes containing IREs in the young mutant vs. wild-type siblings below all suggest that an 
3’ IRE response occurs in aging, hypoxia, and Q96K97/+ mutants, and shared gene expression changes are present. Our findings represent the first evidence 
in a genetic model of familial Alzheimer’s disease supporting a recently-proposed hypothesis that positions disrupted iron homeostasis as a key effect of familial 
Alzheimer’s disease mutations5.

Defining IRE gene 
sets for monitoring 
iron homeostasis

2
Characterising brain 
gene expression 
changes in mutants

3
Exploring iron 
deficiency through 3’ 
IRE gene expression
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IRE gene sets 
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