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Summary

Evidence in a mutation model of familial Alzheimer’s
disease to support iron deficiency as an early step in

disease progression.

Our approach is an extension to standard RNA-seq
analysis that assesses iron homeostasis and its
disruption in different conditions (e.g. aging,

hypoxia).



RNA-seq
Samples &
Study Design

Library prep

* cDNA from whole brains
extracted and prepared

for RNA-seq by Morgan.
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Law et al. 2014: Ritchie et al. 2015



https://genomebiology.biomedcentral.com/articles/10.1186/gb-2014-15-2-r29
https://academic.oup.com/nar/article/43/7/e47/2414268
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® FDR-adjusted p-value from Gene Set Enrichment Analysis with fry, camera, and fgsea < 0.05
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How can we define a
comprehensive and
sensitive set of genes that
we can use to assess iron
homeostasis responses
and how they differ
between conditions?

Iron Responsive
Elements (IREs)




Iron Responsive
Elements (IREs)

Under iron deficient conditions:




Iron Responsive
Elements (IREs)

Nucleic Acids Research

Nucleic Acids Res. 2010 Jul 1; 38(Web Server issue): W360-W367. PMCID: PMC2896125
Published online 2010 May 11. doi: 10.1093/nar/gkq371 PMID: 20460462

SIREs: searching for iron-responsive elements

1,2*

Monica Campillos.1 lldefonso Cases.2 Matthias W. Hentze.1 and Mayka Sanchez
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393 genes
with 5’ IREs

Other gene sets from
MSigDB showing
overlap with IRE gene
sets (enrichment FDR
p-value <0.05)

1,207 genes
with 3’ IREs

Hallmark
Heme
Metabolism

Genes with IREs were identified by searching all reference zebrafish transcripts for IRE stem-loop motifs with SIREs.
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Gene Set Enrichment Analysis as previously done, but with the 3" and 5’ IRE gene sets we defined
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Gene Set Enrichment Analysis as previously done, but with the 3" and 5’ IRE gene sets we defined
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We observed iron zm @
deficiency in the brain
with aging, hvpoxia, ¢

Gene sets
enriched in
aged (24 month)

a familial Alzheimer’s =

discase-like mutation.

A straightforward approach using RNA-seq
relative
data to explore iron homeostasis. to wild-ype

siblings
Exploring iron
deficiency through 3’
IRE gene expression
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